Top List Curated by Listnerd
  • Public list
  • Nov 27th 2012
  • 164 views
  • 45 votes
  • 45 voters
  • 6%
Best Machine shop services of All Time

More about Best Machine shop services of All Time:

Best Machine shop services of All Time is a public top list created by Listnerd on rankly.com on November 27th 2012. Items on the Best Machine shop services of All Time top list are added by the rankly.com community and ranked using our secret ranking sauce. Best Machine shop services of All Time has gotten 164 views and has gathered 45 votes from 45 voters. O O

Best Machine shop services of All Time is a top list in the General category on rankly.com. Are you a fan of General or Best Machine shop services of All Time? Explore more top 100 lists about General on rankly.com or participate in ranking the stuff already on the all time Best Machine shop services of All Time top list below.

If you're not a member of rankly.com, you should consider becoming one. Registration is fast, free and easy. At rankly.com, we aim to give you the best of everything - including stuff like the Best Machine shop services of All Time list.

Get your friends to vote! Spread this URL or share:

Items just added

    1
    Milling machine

    Milling machine

    A milling machine is a machine tool used to machine solid materials. Milling machines are often classed in two basic forms, horizontal and vertical, which refers to the orientation of the main spindle. Both types range in size from small, bench-mounted devices to room-sized machines. Unlike a drill press, which holds the workpiece stationary as the drill moves axially to penetrate the material, milling machines also move the workpiece radially against the rotating milling cutter, which cuts on its sides as well as its tip. Workpiece and cutter movement are precisely controlled to less than 0.001 in (0.025 mm), usually by means of precision ground slides and leadscrews or analogous technology. Milling machines may be manually operated, mechanically automated, or digitally automated via computer numerical control. Milling machines can perform a vast number of operations, from simple (e.g., slot and keyway cutting, planing, drilling) to complex (e.g., contouring, diesinking). Cutting fluid is often pumped to the cutting site to cool and lubricate the cut and to wash away the resulting swarf. Mill orientation is the primary classification for milling machines. The two basic
    6.67
    6 votes
    2

    Prototyping

    Prototyping is the process of quickly putting together a working model (a prototype) in order to test various aspects of a design, illustrate ideas or features and gather early user feedback. Prototyping is often treated as an integral part of the system design process, where it is believed to reduce project risk and cost. Often one or more prototypes are made in a process of iterative and incremental development where each prototype is influenced by the performance of previous designs, in this way problems or deficiencies in design can be corrected. When the prototype is sufficiently refined and meets the functionality, robustness, manufacturability and other design goals, the product is ready for production. The prototyping model is a software development process that begins with requirements collection, followed by prototyping and user evaluation. Often the end users may not be able to provide a complete set of application objectives, detailed input, processing, or output requirements in the initial stage. After the user evaluation, another prototype will be built based on feedback from users, and again the cycle returns to customer evaluation. The cycle starts by listening to
    9.00
    4 votes
    3

    Reverse engineering

    Reverse engineering is the process of discovering the technological principles of a device, object, or system through analysis of its structure, function, and operation. It often involves taking something (a mechanical device, electronic component, computer program, or biological, chemical, or organic matter) apart and analyzing its workings in detail to be used in maintenance, or to try to make a new device or program that does the same thing without using or simply duplicating (without understanding) the original. Reverse engineering has its origins in the analysis of hardware for commercial or military advantage. The purpose is to deduce design decisions from end products with little or no additional knowledge about the procedures involved in the original production. The same techniques are subsequently being researched for application to legacy software systems, not for industrial or defence ends, but rather to replace incorrect, incomplete, or otherwise unavailable documentation. Reasons for reverse engineering: As computer-aided design (CAD) has become more popular, reverse engineering has become a viable method to create a 3D virtual model of an existing physical part for
    7.25
    4 votes
    4

    Sheet metal forming

    Sheet metal forming refers to various processes used to convert sheet metal into different shapes for a large variety of finished parts such as aluminium cans and automobile body panels. Key to the formability of sheet metal is its ductility. Typical forming processes include: Precision Metalforming Association
    7.25
    4 votes
    5
    Turning

    Turning

    Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helical toolpath by moving more or less linearly while the workpiece rotates. The tool's axes of movement may be literally a straight line, or they may be along some set of curves or angles, but they are essentially linear (in the nonmathematical sense). Usually the term "turning" is reserved for the generation of external surfaces by this cutting action, whereas this same essential cutting action when applied to internal surfaces (that is, holes, of one kind or another) is called "boring". Thus the phrase "turning and boring" categorizes the larger family of (essentially similar) processes. The cutting of faces on the workpiece (that is, surfaces perpendicular to its rotating axis), whether with a turning or boring tool, is called "facing", and may be lumped into either category as a subset. Turning can be done manually, in a traditional form of lathe, which frequently requires continuous supervision by the operator, or by using an automated lathe which does not. Today the most common type of such automation is computer numerical control, better known as CNC. (CNC is also commonly
    8.67
    3 votes
    7
    Boring

    Boring

    In machining, boring is the process of enlarging a hole that has already been drilled (or cast), by means of a single-point cutting tool (or of a boring head containing several such tools), for example as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters. There are various types of boring. The boring bar may be supported on both ends (which only works if the existing hole is a through hole), or it may be supported at one end (which works for both through holes and blind holes). Lineboring (line boring, line-boring) implies the former. Backboring (back boring, back-boring) is the process of reaching through an existing hole and then boring on the "back" side of the workpiece (relative to the machine headstock). Because of the limitations on tooling design imposed by the fact that the workpiece mostly surrounds the tool, boring is inherently somewhat more challenging than turning, in terms of decreased toolholding rigidity, increased clearance angle requirements (limiting the amount
    6.00
    3 votes
    8
    Welding

    Welding

    Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces. Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding may be performed in many different environments, including open air, under water and in outer space. Welding is a potentially hazardous undertaking and precautions are required to avoid burns, electric shock, vision damage, inhalation of poisonous gases and fumes, and exposure to intense ultraviolet radiation. Until the end of the 19th century, the only welding process was forge welding, which blacksmiths had used for centuries to join iron
    6.00
    3 votes
    9

    Design for Assembly

    Design for assembly (DFA) is a process by which products are designed with ease of assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs. In addition, if the parts are provided with features which make it easier to grasp, move, orient and insert them, this will also reduce assembly time and assembly costs. The reduction of the number of parts in an assembly has the added benefit of generally reducing the total cost of parts in the assembly. This is usually where the major cost benefits of the application of design for assembly occur. Design for assembly can take different forms. In the 1960s and 70's various rules and recommendations were proposed in order to help designers consider assembly problems during the design process. Many of these rules and recommendations were presented together with practical examples showing how assembly difficulty could be improved. However, it was not until the 1970s that numerical evaluation methods were developed to allow design for assembly studies to be carried out on existing and proposed designs. The first evaluation method was developed at Hitachi and was called the Assembly
    7.00
    2 votes
    10
    Plasma cutting

    Plasma cutting

    Plasma cutting is a process that is used to cut steel and other metals of different thicknesses (or sometimes other materials) using a plasma torch. In this process, an inert gas (in some units, compressed air) is blown at high speed out of a nozzle; at the same time an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to plasma. The plasma is sufficiently hot to melt the metal being cut and moves sufficiently fast to blow molten metal away from the cut. The HF type plasma cutting machines uses a high-frequency, high-voltage spark to ionize the air through the torch head and initiate an arc. These do not require the torch to be in contact with the job material when starting, and so are suitable for applications involving computer numerical controlled (CNC) cutting. More basic machines require tip contact (scratch) with the parent metal to start and then gap separation can occur similar to DC type TIG welders. These more basic type cutters are more susceptible to contact tip and shield damage on starting. The Pilot Arc type uses a two cycle approach to producing plasma, avoiding the need for initial contact. First, a
    7.00
    2 votes
    13
    Laser cutting

    Laser cutting

    Laser cutting is a technology that uses a laser to cut materials, and is typically used for industrial manufacturing applications, but is also starting to be used by schools, small businesses and hobbyists. Laser cutting works by directing the output of a high-power laser, by computer, at the material to be cut. The material then either melts, burns, vaporizes away, or is blown away by a jet of gas, leaving an edge with a high-quality surface finish. Industrial laser cutters are used to cut flat-sheet material as well as structural and piping materials. In 1965, the first production laser cutting machine was used to drill holes in diamond dies. This machine was made by the Western Electric Engineering Research Center. In 1967, the British pioneered laser-assisted oxygen jet cutting for metals. In the early 1970s, this technology was put into production to cut titanium for aerospace applications. At the same time CO2 lasers were adapted to cut non-metals, such as textiles, because they were absorbed by metals. There are three main types of lasers used in laser cutting. The CO2 laser is suited for cutting, boring, and engraving. The neodymium (Nd) and neodymium
    5.00
    2 votes
    14

    Gear cutting

    Gear cutting is the process of creating a gear. The most common processes include hobbing, broaching, and machining; other processes include shaping, forging, extruding, casting, and powder metallurgy. Gears are commonly made from metal, plastic, and wood. For very large gears or splines, a vertical broach is used. It consists of a vertical rail that carries a single tooth cutter formed to create the tooth shape. A rotary table and a Y axis are the customary axes available. Some machines will cut to a depth on the Y axis and index the rotary table automatically. The largest gears are produced on these machines. Other operations such as broaching work particularly well for cutting teeth on the inside. The downside to this is that it is expensive and different broaches are required to make different sized gears. Therefore it is mostly used in very high production runs. Hobbing is a method by which a hob is used to cut teeth into a blank. The cutter and gear blank are rotated at the same time to transfer the profile of the hob onto the gear blank. The hob must make one revolution to create each tooth of the gear. Used very often for all sizes of production runs, but works best for
    7.00
    1 votes
    15

    Grinding

    Grinding is an abrasive machining process that uses a grinding wheel as the cutting tool. A wide variety of machines are used for grinding: Grinding practice is a large and diverse area of manufacturing and toolmaking. It can produce very fine finishes and very accurate dimensions; yet in mass production contexts it can also rough out large volumes of metal quite rapidly. It is usually better suited to the machining of very hard materials than is "regular" machining (that is, cutting larger chips with cutting tools such as tool bits or milling cutters), and until recent decades it was the only practical way to machine such materials as hardened steels. Compared to "regular" machining, it is usually better suited to taking very shallow cuts, such as reducing a shaft's diameter by half a thousandth of an inch (thou) or 12.7 um. Grinding is a subset of cutting, as grinding is a true metal-cutting process. Each grain of abrasive functions as a microscopic single-point cutting edge (although of high negative rake angle), and shears a tiny chip that is analogous to what would conventionally be called a "cut" chip (turning, milling, drilling, tapping, etc.). However, among people who work
    4.50
    2 votes
    16
    Water jet cutter

    Water jet cutter

    A water jet cutter, also known as a waterjet, is a tool capable of slicing into metal or other materials (such as granite) using a jet of water at high velocity and pressure, or a mixture of water and an abrasive substance. The process is essentially the same as water erosion found in nature but greatly accelerated and concentrated. It is often used during fabrication or manufacture of parts for machinery and other devices. It is the preferred method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as cutting, shaping, carving, and reaming. While using high-pressure water for erosion dates back as far as the mid-1800s with hydraulic mining, it was not until the 1930s that narrow jets of water started to appear as an industrial cutting device. In 1933, the Paper Patents Company in Wisconsin developed a paper metering, cutting, and reeling machine that used a diagonally moving waterjet nozzle to cut a horizontally moving sheet of continuous paper. These early applications were at a low pressure and restricted to soft
    6.00
    1 votes
    17

    Jig

    In metalworking and woodworking, a jig is a type of tool used to control the location and/or motion of another tool. A jig's primary purpose is to provide repeatability, accuracy, and interchangeability in the manufacturing of products. A jig is often confused with a fixture; a fixture holds the work in a fixed location. A device that does both functions (holding the work and guiding a tool) is called a jig. An example of a jig is when a key is duplicated, the original is used as a jig so the new key can have the same path as the old one. Since the advent of automation and computer numerical controlled (CNC) machines, jigs are often not required because the tool path is digitally programmed and stored in memory. Jigs may be made for reforming plastics. Jigs or templates have been known long before the industrial age. There are many types of jigs, and each one is custom-tailored to do a specific job. Many jigs are created because there is a necessity to do so by the tradesmen. Some are to increase productivity, to do repetitious activities and to do a job more precisely. Some types of jigs are also called templates or guides. Jigs include machining jigs, woodworking jigs (e.g.
    4.00
    1 votes
    18

    Balancing Machine

    A balancing machine is a measuring tool used for balancing rotating machine parts such as rotors for electric motors, fans, turbines, disc brakes, disc drives, propellers and pumps. The machine usually consists of two rigid pedestals, with suspension and bearings on top supporting a mounting platform. The unit under test is bolted to the platform and is rotated either with a belt-, air-, or end-drive. As the part is rotated, the vibration in the suspension is detected with sensors and that information is used to determine the amount of unbalance in the part. Along with phase information, the machine can determine how much and where to add weights to balance the part. There are two main types of balancing machines, hard-bearing and soft-bearing. The difference between them, however, is in the suspension and not the bearings. In a hard-bearing machine, balancing is done at a frequency lower than the resonance frequency of the suspension. In a soft-bearing machine, balancing is done at a frequency higher than the resonance frequency of the suspension. Both types of machines have various advantages and disadvantages. A hard-bearing machine is generally more versatile and can handle
    0.00
    0 votes
    Get your friends to vote! Spread this URL or share:

    Discuss Best Machine shop services of All Time

    Top List Voters